论文标题
关于Tomaszewski的立方体顶点问题
On Tomaszewski's Cube Vertices Problem
论文作者
论文摘要
以下断言等同于B. tomaszewski提出的猜想:让$ c $为$ n $ dipermensional的单位立方体,让$ h $是厚度$ 1 $的木板,两者都以起源为中心,然后无论如何将Cube围绕Cube,$ C \ cap h $都包含了Cap H $的一半,至少包含Cube $ 2^n $ 2^n $ vertices。获得了$ c $ $ c \ cap H $的顶点的下限。
The following assertion was equivalent to a conjecture proposed by B. Tomaszewski : Let $C$ be an $n$-dimensional unit cube and let $H$ be a plank of thickness $1$, both are centered at the origin, then no matter how to turn the cube around, $C\cap H$ contains at least half of the cube's $2^n$ vertices. A lower bound for the number of the vertices of $C$ in $C\cap H$ was obtained.