论文标题

超越ADMM:统一的客户变化降低的自适应联合学习框架

Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated Learning Framework

论文作者

Wang, Shuai, Xu, Yanqing, Wang, Zhiguo, Chang, Tsung-Hui, Quek, Tony Q. S., Sun, Defeng

论文摘要

作为一种新颖的分布式学习范式,联邦学习(FL)在与大型客户打交道方面面临着严重的挑战。已经引入了各种客户变化降低计划和客户抽样策略,以提高FL的鲁棒性。除其他外,发现原始二重算法(例如方法乘数的交替方向(ADMM))被发现对数据分布有弹性,并且胜过大多数原始的仅FL算法。但是,背后的原因仍然是一个谜。在本文中,我们首先揭示了一个事实,即联邦ADMM本质上是降低客户端变化的算法。尽管这解释了联邦ADMM的固有稳健性,但它的香草版本缺乏适应客户异质性程度的能力。此外,客户端采样下的服务器上的全局模型是有偏见的,从而减慢了实际收敛性。为了超越ADMM,我们提出了一种称为FedVra的新型原始双偶二元算法,该算法使人们可以自适应地控制全局模型的方差减少水平和偏见。此外,Fedvra在某种意义上统一了几种代表性的FL算法,因为它们要么是FedVra的特殊实例,要么与之接近。还提出了FedVRA到半/监督学习的扩展。基于(半)监督图像分类任务的实验表明,在具有大量异质客户和客户采样的学习方案中,FedVRA优于现有方案的优势。

As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源