论文标题
机器学到的分散性的原子间潜力增强了面向组件的等离子体
Machine Learned Interatomic Potential for Dispersion Strengthened Plasma Facing Components
论文作者
论文摘要
钨(W)是分离材料的首选材料,因为其高温温度,导热率和溅射阈值。但是,W具有很高的脆性转变温度,在融合反应堆温度($ \ geq $ 1000k)下可能会经过重结晶和晶粒的生长。用碳化锆(ZRC)加长W可以改善延展性并限制晶粒的生长,但是分散体对高温下微结构进化和热机械性能的许多影响仍然未知。我们为W-ZRC提供了机器学习的光谱邻域分析潜力(SNAP),现在可以用于研究这些材料。为了在融合反应堆温度下构建适用于大规模原子模拟的潜力,有必要根据从头算数据进行训练,该数据为各种结构,化学环境和温度产生。使用物质特性和高温稳定性的目标函数实现了电势的进一步准确性和稳定性测试。在优化电位上证实了晶格参数,表面能,大量模量和热膨胀的验证。 W/ZRC双晶的拉伸测试表明,虽然W(110)-ZRC(111)C端的双晶在室温下具有最高的最终拉伸强度(UT),但观察到的强度随温度的升高而降低。在2500K时,终端C层扩散到W中,导致W-ZR接口较弱。同时,W(110)-ZRC(111)ZR终止双晶的UT在2500K处最高。
Tungsten (W) is a material of choice for the divertor material due to its high melting temperature, thermal conductivity, and sputtering threshold. However, W has a very high brittle-to-ductile transition temperature and at fusion reactor temperatures ($\geq$1000K) may undergo recrystallization and grain growth. Dispersion-strengthening W with zirconium carbide (ZrC) can improve ductility and limit grain growth, but much of the effects of the dispersoids on microstructural evolution and thermomechanical properties at high temperature are still unknown. We present a machine learned Spectral Neighbor Analysis Potential (SNAP) for W-ZrC that can now be used to study these materials. In order to construct a potential suitable for large-scale atomistic simulations at fusion reactor temperatures, it is necessary to train on ab initio data generated for a diverse set of structures, chemical environments, and temperatures. Further accuracy and stability tests of the potential were achieved using objective functions for both material properties and high temperature stability. Validation of lattice parameters, surface energies, bulk moduli, and thermal expansion is confirmed on the optimized potential. Tensile tests of W/ZrC bicrystals show that while the W(110)-ZrC(111) C-terminated bicrystal has the highest ultimate tensile strength (UTS) at room temperature, observed strength decreases with increasing temperature. At 2500K, the terminating C layer diffuses into the W, resulting in a weaker W-Zr interface. Meanwhile, the W(110)-ZrC(111) Zr-terminated bicrystal has the highest UTS at 2500K.