论文标题

KGML-XDTD:基于知识图的机器学习框架用于药物治疗预测和机制描述

KGML-xDTD: A Knowledge Graph-based Machine Learning Framework for Drug Treatment Prediction and Mechanism Description

论文作者

Ma, Chunyu, Zhou, Zhihan, Liu, Han, Koslicki, David

论文摘要

背景:计算药物重新利用是一种成本和及时的方法,旨在确定现有药物/化合物的新治疗靶标或疾病(适应症)。与传统的湿lab药物发现方法相比,由于其更便宜的投资和较短的研究周期,这对于新兴和/或孤儿疾病尤其重要。但是,重新利用药物及其靶病之间的基本作用机制(MOA)基本上是未知的,这仍然是计算药物重新利用方法的主要障碍,可以在临床环境中广泛采用。 结果:在这项工作中,我们提出了KGML-XDTD:一个基于知识图的机器学习框架,用于可解释预测治疗疾病的药物。这是一个两模块的框架,不仅可以预测药物/化合物和疾病之间的治疗概率,而且还可以通过基于知识图(KG)基于基于知识的,可检验的作用机理(MOAS)来解释它们。我们利用基于知识和出版物的信息来提取具有生物学意义的“演示路径”,作为基于图的强化学习(GRL)探路过程中的中间指导。全面的实验和案例研究分析表明,拟议的框架可以在药物重新利用和概括的人类疗法的药物MOA路径的预测中实现最新性能。 结论:KGML-XDTD是第一个模型框架,可以通过利用预测结果与现有生物学知识和出版物的结合来提供kg-path解释来重新利用预测。我们认为,它可以有效地减少基于预测的基于路径的解释,并进一步加速新兴疾病的药物发现过程,从而有效地减少“黑盒”关注点,并增加对药物重新利用的预测信心。

Background: Computational drug repurposing is a cost- and time-efficient approach that aims to identify new therapeutic targets or diseases (indications) of existing drugs/compounds. It is especially critical for emerging and/or orphan diseases due to its cheaper investment and shorter research cycle compared with traditional wet-lab drug discovery approaches. However, the underlying mechanisms of action (MOAs) between repurposed drugs and their target diseases remain largely unknown, which is still a main obstacle for computational drug repurposing methods to be widely adopted in clinical settings. Results: In this work, we propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases. It is a two-module framework that not only predicts the treatment probabilities between drugs/compounds and diseases but also biologically explains them via knowledge graph (KG) path-based, testable mechanisms of action (MOAs). We leverage knowledge-and-publication based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning (GRL) path-finding process. Comprehensive experiments and case study analyses show that the proposed framework can achieve state-of-the-art performance in both predictions of drug repurposing and recapitulation of human-curated drug MOA paths. Conclusions: KGML-xDTD is the first model framework that can offer KG-path explanations for drug repurposing predictions by leveraging the combination of prediction outcomes and existing biological knowledge and publications. We believe it can effectively reduce "black-box" concerns and increase prediction confidence for drug repurposing based on predicted path-based explanations, and further accelerate the process of drug discovery for emerging diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源