论文标题
复杂网络中的极端事件:学位分布与排斥相互作用之间的相互作用
Extreme events in a complex network: interplay between degree distribution and repulsive interaction
论文作者
论文摘要
这里研究了拓扑异质性在网络中极端事件的起源中的作用。假定与节点相关的振荡器的动力学被认为是相同的,并且受平均场排斥相互作用的影响。拓扑异质性的相互作用以及网络动力学单位之间的排斥相互作用触发节点中的极端事件,当每个节点屈服于此类事件,以分散不同的排斥耦合范围。高度节点容易受到较弱的排斥相互作用,而低度节点容易受到更强的相互作用。结果,极端事件的形成随着排斥相互作用的强度从高度到低度节点而变化。任何节点处的极端事件都以大于阈值高且罕见发生的偶尔出现大振幅事件(时间动力学的振幅)的出现而识别出来,我们通过估计所有事件的概率分布来确认。极端事件出现在从旋转到库的边界附近的任何振荡器上,都以排斥耦合强度的临界值出现。为了探索现象,使用范式二阶模型来表示与每个节点相关的振荡器的动力学。我们进行了退火网络近似,以减少我们的原始模型,从而确认排斥相互作用的双重作用以及在任何振荡器中极端事件的起源中的节点的程度。
The role of topological heterogeneity in the origin of extreme events in a network is investigated here. The dynamics of the oscillators associated with the nodes are assumed to be identical and influenced by mean-field repulsive interactions. An interplay of topological heterogeneity and the repulsive interaction between the dynamical units of the network triggers extreme events in the nodes when each node succumbs to such events for discretely different ranges of repulsive coupling. A high degree node is vulnerable to weaker repulsive interactions, while a low degree node is susceptible to stronger interactions. As a result, the formation of extreme events changes position with increasing strength of repulsive interaction from high to low degree nodes. Extreme events at any node are identified with the appearance of occasional large-amplitude events (amplitude of the temporal dynamics) that are larger than a threshold height and rare in occurrence, which we confirm by estimating the probability distribution of all events. Extreme events appear at any oscillator near the boundary of transition from rotation to libration at a critical value of the repulsive coupling strength. To explore the phenomenon, a paradigmatic second-order phase model is used to represent the dynamics of the oscillator associated with each node. We make an annealed network approximation to reduce our original model and thereby confirm the dual role of the repulsive interaction and the degree of a node in the origin of extreme events in any oscillator.