论文标题

使用SET变压器和超图预测网络重建喷气机中的粒子

Reconstructing particles in jets using set transformer and hypergraph prediction networks

论文作者

Di Bello, Francesco Armando, Dreyer, Etienne, Ganguly, Sanmay, Gross, Eilam, Heinrich, Lukas, Ivina, Anna, Kado, Marumi, Kakati, Nilotpal, Santi, Lorenzo, Shlomi, Jonathan, Tusoni, Matteo

论文摘要

从低级检测器响应数据重建粒子以预测碰撞事件中最终状态粒子集的任务代表了一个设定的预测任务,需要使用多个功能及其在输入数据中的相关性。我们部署了三个独立的设定神经网络体系结构,以在包含完全模拟的热量计中包含单个喷气机的事件中重建粒子。根据粒子重建质量,性质回归和喷射级指标评估性能。结果表明,如此高维的端到端方法成功地超越了基本的参数方法,可以在喷气机内部解开单个中性颗粒并优化补充探测器信息的使用。尤其是,性能比较有利于基于学习超图结构HGPFLOF的新型体系结构,该结构从物理上解剖的粒子重建方法中受益。

The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow, which benefits from a physically-interpretable approach to particle reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源