论文标题
用于流体结构相互作用的自适应浸入网格法(AIMM)
Adaptive Immersed Mesh Method (AIMM) for Fluid Structure Interaction
论文作者
论文摘要
我们的论文提出了一种建模流体结构相互作用(FSI)的创新方法。我们的方法结合了传统的整体和分区方法,创造了一种促进FSI的混合解决方案。在每次迭代时,固体网格都浸入流体固体网格中,同时保持其独立的拉格朗日超弹性求解器。 Eulerian网格既包含流体和固体成分,并适应各种物理现象。我们通过各向异性网状适应和水平集方法增强了固体与流体之间的相互作用。这使其相互作用更准确地表示。这些组件共同构成了自适应浸入网格方法(AIMM)。对于这两个求解器,我们都使用变分多尺度方法(VM)方法,从而减轻了通过分段线性四面体元件常见的潜在虚假振荡。该框架以3D运行,具有并行的计算功能。我们的方法的准确性,鲁棒性和能力是通过一系列2D数值问题评估的。此外,我们提出了各种三维测试用例,并将其结果与实验数据进行比较。
Our paper proposes an innovative approach for modeling Fluid-Structure Interaction (FSI). Our method combines both traditional monolithic and partitioned approaches, creating a hybrid solution that facilitates FSI. At each time iteration, the solid mesh is immersed within a fluid-solid mesh, all while maintaining its independent Lagrangian hyperelastic solver. The Eulerian mesh encompasses both the fluid and solid components and accommodates various physical phenomena. We enhance the interaction between solid and fluid through anisotropic mesh adaptation and the Level-Set methods. This enables a more accurate representation of their interaction. Together, these components constitute the Adaptive Immersed Mesh Method (AIMM). For both solvers, we utilize the Variational Multi-Scale (VMS) method, mitigating potential spurious oscillations common with piecewise linear tetrahedral elements. The framework operates in 3D with parallel computing capabilities. Our methods accuracy, robustness, and capabilities are assessed through a series of 2D numerical problems. Furthermore, we present various three-dimensional test cases and compare their results to experimental data.