论文标题
MHCCL:多元时间序列的掩盖层次群体群体群体的对比度学习
MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for Multivariate Time Series
论文作者
论文摘要
从原始未标记的时间序列数据中学习语义丰富的表示对于分类和预测等下游任务至关重要。在没有专家注释的情况下,对比度学习最近显示了其有希望的表示能力。但是,现有的对比方法通常独立对待每个实例,这会导致共享相同语义的虚假负面对。为了解决这个问题,我们提出了MHCCL,这是一个掩盖的层次结构群体对比度学习模型,该模型利用了从层次结构中获得的语义信息,该层次结构由多个多元时间序列的多个潜在分区组成。通过观察到细颗粒聚类可以保留较高纯度而粗粒颗粒的观察,我们提出了一种新颖的向下掩盖策略,以通过将群集层次结合的多粒性信息纳入多个范围的阳性。此外,在MHCCL中设计了一种新颖的向上掩蔽策略,以删除每个分区中群集的异常值,以完善原型,这有助于加快层次聚类过程并提高聚类质量。我们对七个广泛使用的多元时间序列数据集进行了实验评估。结果证明了MHCCL比无监督时间序列表示学习的最先进方法的优越性。
Learning semantic-rich representations from raw unlabeled time series data is critical for downstream tasks such as classification and forecasting. Contrastive learning has recently shown its promising representation learning capability in the absence of expert annotations. However, existing contrastive approaches generally treat each instance independently, which leads to false negative pairs that share the same semantics. To tackle this problem, we propose MHCCL, a Masked Hierarchical Cluster-wise Contrastive Learning model, which exploits semantic information obtained from the hierarchical structure consisting of multiple latent partitions for multivariate time series. Motivated by the observation that fine-grained clustering preserves higher purity while coarse-grained one reflects higher-level semantics, we propose a novel downward masking strategy to filter out fake negatives and supplement positives by incorporating the multi-granularity information from the clustering hierarchy. In addition, a novel upward masking strategy is designed in MHCCL to remove outliers of clusters at each partition to refine prototypes, which helps speed up the hierarchical clustering process and improves the clustering quality. We conduct experimental evaluations on seven widely-used multivariate time series datasets. The results demonstrate the superiority of MHCCL over the state-of-the-art approaches for unsupervised time series representation learning.