论文标题

在sudoku中的可得性

Deducibility in Sudoku

论文作者

Mašulović, Dragan

论文摘要

在本文中,我们提供了一种形式主义,即sudoku逻辑,其中解决方案在逻辑上是可以推论的,如果对于网格的每个单元格,我们可以证明除了单个选项之外都可以排除所有内容。我们证明,Sudoku逻辑的演绎系统是合理而完整的,因此,当且仅当它具有可疑的解决方案时,我们证明了Sudoku拼图具有独特的解决方案。然后,使用Adler和Adler对基本的Sudoku转换分类,然后我们将Sudoku中对称性的概念形式化,并提供了Gurth对称放置定理的正式证明。在总结部分中,我们提出了一个Sudoku公式,该公式捕获了具有独特解决方案的Sudoku网格的想法。事实证明,这个公式是sudoku逻辑的公理,使我们有可能向sudoku社区提供解决唯一性争议的解决:如果我们接受本文所介绍的sudoku逻辑,就没有争议!唯一性是公理,并且与任何其他公理一样,可以在任何sudoku扣除中自由使用。

In this paper we provide a formalism, Sudoku logic, in which a solution is logically deducible if for every cell of the grid we can provably exclude all but a single option. We prove that the deductive system of Sudoku logic is sound and complete, and as a consequence of that we prove that a Sudoku puzzle has a unique solution if and only if it has a deducible solution. Using the classification of fundamental Sudoku transformations by Adler and Adler we then formalize the notion of symmetry in Sudoku and provide a formal proof of Gurth's Symmetrical Placement Theorem. In the concluding section we present a Sudoku formula that captures the idea of a Sudoku grid having a unique solution. It turns out that this formula is an axiom of Sudoku logic, making it possible for us to offer to the Sudoku community a resolution of the Uniqueness Controversy: if we accept Sudoku logic as presented in this paper, there is no controversy! Uniqueness is an axiom and, as any other axiom, may freely be used in any Sudoku deduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源