论文标题

秘密控制线性系统

Covertly Controlling a Linear System

论文作者

Amihood, Barak, Cohen, Asaf

论文摘要

考虑秘密控制线性系统的问题。在这个问题中,爱丽丝希望控制(稳定或改变)线性系统的行为,同时保持观察者威利(Willie),无法决定该系统是否确实受到控制。 我们正式定义了问题,在一个模型下,威利只能观察系统的输出。专注于AR(1)系统,我们表明当Willie通过干净的通道观察系统的输出时,就无法稳定固有的不稳定线性系统。但是,可以秘密地控制固有的稳定线性系统,以秘密地更改其参数或重置其内存。此外,我们为两个重要控制器提供正面和负面的结果:最小信息控制器,在该控制器中,Alice只能使用每个样本的$ 1 $位,以及最大信息控制器,其中允许Alice查看实用值的输出。与秘密交流(在费率和秘密之间取舍的情况下,结果都显示出有趣的\ emph {三折}交易 - 掩盖控制中的交易:控制器使用的信息量,控制性能和秘密性。

Consider the problem of covertly controlling a linear system. In this problem, Alice desires to control (stabilize or change the behavior of) a linear system, while keeping an observer, Willie, unable to decide if the system is indeed being controlled or not. We formally define the problem, under a model where Willie can only observe the system's output. Focusing on AR(1) systems, we show that when Willie observes the system's output through a clean channel, an inherently unstable linear system can not be covertly stabilized. However, an inherently stable linear system can be covertly controlled, in the sense of covertly changing its parameter or resetting its memory. Moreover, we give positive and negative results for two important controllers: a minimal-information controller, where Alice is allowed to use only $1$ bit per sample, and a maximal-information controller, where Alice is allowed to view the real-valued output. Unlike covert communication, where the trade-off is between rate and covertness, the results reveal an interesting \emph{three--fold} trade--off in covert control: the amount of information used by the controller, control performance and covertness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源