论文标题

用于图形对比度学习及其他的光谱特征增强

Spectral Feature Augmentation for Graph Contrastive Learning and Beyond

论文作者

Zhang, Yifei, Zhu, Hao, Song, Zixing, Koniusz, Piotr, King, Irwin

论文摘要

尽管增强(例如,图形边缘的扰动,图像作物)提高了对比度学习的效率(CL),但特征水平增强是另一个合理的,互补的,但研究不太精心研究的策略。因此,我们为图(和图像)上的对比度学习提供了一种新颖的光谱特征论证。为此,对于每个数据视图,我们估计每个特征映射的低级别近似值,并从地图中减去近似值以获得其补充。这是通过本文提出的不完整的功率迭代来实现的,这是一种非标准的电源迭代制度,享有两个有价值的副产品(仅在一个或两个迭代下):(i)它部分平衡了功能图的频谱,(ii)它将噪声注入了功能图映射的重新平衡的噪声(Spectral Evermentation)。对于两种视图,我们将这些重新平衡的特征图对齐,因为改进的对齐步骤可以更集中于两种视图的矩阵的较不优势奇异值,而光谱增强不影响频谱角度比对(奇异向量不会扰动)。我们得出以下分析形式:(i)捕获其光谱平衡效果的不完整功率迭代,以及(ii)奇异值的差异被噪声隐含地增强。我们还表明,光谱增强改善了概括结合。图形/图像数据集上的实验表明,我们的光谱特征增强功能优于基准,并且与其他增强策略相辅相成,并且与各种对比度损失兼容。

Although augmentations (e.g., perturbation of graph edges, image crops) boost the efficiency of Contrastive Learning (CL), feature level augmentation is another plausible, complementary yet not well researched strategy. Thus, we present a novel spectral feature argumentation for contrastive learning on graphs (and images). To this end, for each data view, we estimate a low-rank approximation per feature map and subtract that approximation from the map to obtain its complement. This is achieved by the proposed herein incomplete power iteration, a non-standard power iteration regime which enjoys two valuable byproducts (under mere one or two iterations): (i) it partially balances spectrum of the feature map, and (ii) it injects the noise into rebalanced singular values of the feature map (spectral augmentation). For two views, we align these rebalanced feature maps as such an improved alignment step can focus more on less dominant singular values of matrices of both views, whereas the spectral augmentation does not affect the spectral angle alignment (singular vectors are not perturbed). We derive the analytical form for: (i) the incomplete power iteration to capture its spectrum-balancing effect, and (ii) the variance of singular values augmented implicitly by the noise. We also show that the spectral augmentation improves the generalization bound. Experiments on graph/image datasets show that our spectral feature augmentation outperforms baselines, and is complementary with other augmentation strategies and compatible with various contrastive losses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源