论文标题
通过智能定位加速逆学习和探索性抽样
Accelerating Inverse Learning via Intelligent Localization with Exploratory Sampling
论文作者
论文摘要
在“科学AI”的范围内,解决逆问题是材料和药物发现的长期挑战,目的是确定给定一组理想特性的隐藏结构。最近提出了深层生成模型来解决反问题,但是当前使用昂贵的远期操作员并在精确定位确切的解决方案并充分探索参数空间而又不丢失解决方案方面进行挣扎。在这项工作中,我们提出了一种新颖的方法(称为iPage),以通过利用概率推断从深度可逆模型中利用概率推断,并通过快速梯度下降来确定性优化。鉴于目标属性,学习的可逆模型提供了比参数空间的后部。我们将这些后样本确定为智能初始化,使我们能够缩小搜索空间的范围。然后,我们执行梯度下降以校准局部区域内的反溶液。同时,在潜在空间上施加了空间填充抽样,以更好地探索和捕获所有可能的解决方案。我们在三个基准任务和两个创建的数据集上评估了使用量子化学和添加剂制造的现实应用程序的数据集,并发现我们的方法与几种最新的基线方法相比,我们的方法取得了卓越的性能。 iPage代码可在https://github.com/jxzhangjhu/matdesinne上找到。
In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.