论文标题

替代$ M_2 $ -Algebras和$ {\MITγ} $ - 代数

Alternative $M_2$-algebras and ${\mit Γ}$-algebras

论文作者

Grishkov, Alexandre, Shestakov, Ivan

论文摘要

最近,V.H.LópezSolís和I.Shestakov解决了N.Jacobson的旧问题,描述了包含$ 2 \ times 2 $矩阵代数$ M_2 $的Unital替代代数为Unital Subalgebra。在这里,我们通过6维替代超级级$ b(4,2)$和辅助$ \ mathbf {\ mit z} _2 $ graded algebra $ \mitγ$提供了另一个描述$ M_2 $ -Algebras。发生$ M_2 $ -Algebras的替代类别与$ \MITγ$ -Algebras类别是同构。对于任何关联和交换的代数$ a $,我们提供了$ {\mitγ} $ - 代数$ \mitγ(a)$的构造,这变成了Jordan Superalgebra;如果$ a $是一个域,则$ \mitγ(a)$是主要的超级级。我们还描述了免费的$ \mitγ$ - 代数并构建其基础。

Recently V.H.López Solís and I.Shestakov solved an old problem by N.Jacobson on describing of unital alternative algebras containing the $2\times 2$ matrix algebra $M_2$ as a unital subalgebra. Here we give another description of $M_2$-algebras via the 6-dimensional alternative superalgebra $B(4,2)$ and an auxiliar $\mathbf {\mit Z}_2$-graded algebra $\mitΓ$. It occurs that the category of alternative $M_2$-algebras is isomorphic to the category of $\mitΓ$-algebras. For any associative and commutative algebra $A$, we give a construction of a ${\mit Γ}$-algebra $\mitΓ(A)$, which turns to be a Jordan superalgebra; if $A$ is a domain then $\mitΓ(A)$ is a prime superalgebra. We describe also the free $\mitΓ$-algebras and construct their bases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源