论文标题

SimpleMind为深度神经网络添加了思考

SimpleMind adds thinking to deep neural networks

论文作者

Choi, Youngwon, Wahi-Anwar, M. Wasil, Brown, Matthew S.

论文摘要

深度神经网络(DNNS)检测数据中的模式,并在许多计算机视觉应用中显示出多功能性和强大的性能。但是,单独的DNN容易遭受明显的错误,这些错误违反了简单,常识的概念,并且使用明确的知识来指导其搜索和决策的能力受到限制。尽管总体DNN性能指标可能是好的,但这些明显的错误以及缺乏解释性,阻止了对关键任务(例如医学图像分析)的广泛采用。本文的目的是介绍SimpleMind,这是一个开源软件框架,用于认知AI,专注于医学图像的理解。它允许创建一个知识库,该知识库描述了直观的人类可读形式的图像对象之间的预期特征和关系。 SimpleMind框架通过以下方式将思考的思考为:(1)提供有关图像内容的知识基础的方法,例如空间推断和有条件的推理以检查DNN输出; (2)以通用软件代理的形式应用过程知识,它们被链在一起以完成图像预处理,DNN预测和结果后处理,以及(3)对所有知识基础参数进行自动合作以适应特定问题。 SimpleMind可以在多个检测到的对象上进行推理以确保一致性,从而在DNN输出之间提供交叉检查。该机器推理通过可解释的模型和可解释的决策来提高DNN的可靠性和可信赖性。提供了示例应用程序,以证明SimpleMind如何通过将它们嵌入认知AI框架中来支持和改善深层神经网络。

Deep neural networks (DNNs) detect patterns in data and have shown versatility and strong performance in many computer vision applications. However, DNNs alone are susceptible to obvious mistakes that violate simple, common sense concepts and are limited in their ability to use explicit knowledge to guide their search and decision making. While overall DNN performance metrics may be good, these obvious errors, coupled with a lack of explainability, have prevented widespread adoption for crucial tasks such as medical image analysis. The purpose of this paper is to introduce SimpleMind, an open-source software framework for Cognitive AI focused on medical image understanding. It allows creation of a knowledge base that describes expected characteristics and relationships between image objects in an intuitive human-readable form. The SimpleMind framework brings thinking to DNNs by: (1) providing methods for reasoning with the knowledge base about image content, such as spatial inferencing and conditional reasoning to check DNN outputs; (2) applying process knowledge, in the form of general-purpose software agents, that are chained together to accomplish image preprocessing, DNN prediction, and result post-processing, and (3) performing automatic co-optimization of all knowledge base parameters to adapt agents to specific problems. SimpleMind enables reasoning on multiple detected objects to ensure consistency, providing cross checking between DNN outputs. This machine reasoning improves the reliability and trustworthiness of DNNs through an interpretable model and explainable decisions. Example applications are provided that demonstrate how SimpleMind supports and improves deep neural networks by embedding them within a Cognitive AI framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源