论文标题

基于卷积和自我发挥融合

Dunhuang murals contour generation network based on convolution and self-attention fusion

论文作者

Liu, Baokai, He, Fengjie, Du, Shiqiang, Zhang, Kaiwu, Wang, Jianhua

论文摘要

Dunhuang壁画是中国风格和民族风格的集合,形成了一种独立的中国风格的佛教艺术。它具有很高的历史和文化价值和研究意义。其中,Dunhuang壁画的线条高度笼统和表现力。它反映了角色的独特性格和复杂的内在情绪。因此,壁画的轮廓对邓洪文化的研究具有重要意义。 Dunhuang壁画的轮廓生成属于图像边缘检测,这是计算机视觉的重要分支,旨在提取图像中的显着轮廓信息。尽管基于卷积的深度学习网络通过探索图像的上下文和语义特征在图像边缘提取方面取得了良好的结果。但是,随着接收领域的扩大,一些本地细节信息丢失了。这使得他们不可能生成合理的壁画图纸。在本文中,我们提出了一个基于自我发项的新型边缘探测器,并结合卷积生成邓尚壁画的线条图。与现有的边缘检测方法相比,首先提出了新的残留自我注意和卷积混合模块(RAMIX),以融合特征地图中的本地和全局特征。其次,一个新型的密集连接的主链萃取网络旨在有效地将浅层层的丰富边缘特征信息传播到深层。与现有方法相比,在不同的公共数据集中显示,我们的方法能够生成更清晰和更丰富的边缘地图。此外,对Dunhuang壁画数据集进行测试表明,我们的方法可以实现非常具竞争力的性能。

Dunhuang murals are a collection of Chinese style and national style, forming a self-contained Chinese-style Buddhist art. It has very high historical and cultural value and research significance. Among them, the lines of Dunhuang murals are highly general and expressive. It reflects the character's distinctive character and complex inner emotions. Therefore, the outline drawing of murals is of great significance to the research of Dunhuang Culture. The contour generation of Dunhuang murals belongs to image edge detection, which is an important branch of computer vision, aims to extract salient contour information in images. Although convolution-based deep learning networks have achieved good results in image edge extraction by exploring the contextual and semantic features of images. However, with the enlargement of the receptive field, some local detail information is lost. This makes it impossible for them to generate reasonable outline drawings of murals. In this paper, we propose a novel edge detector based on self-attention combined with convolution to generate line drawings of Dunhuang murals. Compared with existing edge detection methods, firstly, a new residual self-attention and convolution mixed module (Ramix) is proposed to fuse local and global features in feature maps. Secondly, a novel densely connected backbone extraction network is designed to efficiently propagate rich edge feature information from shallow layers into deep layers. Compared with existing methods, it is shown on different public datasets that our method is able to generate sharper and richer edge maps. In addition, testing on the Dunhuang mural dataset shows that our method can achieve very competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源