论文标题
对象触者:生成对象合成
ObjectStitch: Generative Object Compositing
论文作者
论文摘要
基于2D图像的对象合成是一个具有挑战性的问题,因为它通常涉及多个处理阶段,例如颜色协调,几何校正和阴影生成,以产生逼真的结果。此外,注释培训数据对进行合成需要专业人士的大量手动努力,并且几乎是可扩展的。因此,随着生成模型的最新进展,在这项工作中,我们通过利用条件扩散模型的力量提出了一个自制框架,以组合对象组合。我们的框架可以在统一模型中蜂拥而至,从而在不需要手动标签的同时,在统一模型中解决对象组合任务,从而改变了生成对象的观点,几何形状,颜色和阴影。为了保留输入对象的特征,我们引入了一个内容适配器,该适配器有助于维护分类语义和对象外观。进一步采用了一种数据增强方法来提高发电机的保真度。在用户研究各种现实世界图像中,我们的方法在综合结果图像的现实主义和忠诚中都优于相关基线。
Object compositing based on 2D images is a challenging problem since it typically involves multiple processing stages such as color harmonization, geometry correction and shadow generation to generate realistic results. Furthermore, annotating training data pairs for compositing requires substantial manual effort from professionals, and is hardly scalable. Thus, with the recent advances in generative models, in this work, we propose a self-supervised framework for object compositing by leveraging the power of conditional diffusion models. Our framework can hollistically address the object compositing task in a unified model, transforming the viewpoint, geometry, color and shadow of the generated object while requiring no manual labeling. To preserve the input object's characteristics, we introduce a content adaptor that helps to maintain categorical semantics and object appearance. A data augmentation method is further adopted to improve the fidelity of the generator. Our method outperforms relevant baselines in both realism and faithfulness of the synthesized result images in a user study on various real-world images.