论文标题
导航到现实世界中的物体
Navigating to Objects in the Real World
论文作者
论文摘要
语义导航对于在我们的房屋,学校和医院等不受控制的环境中部署移动机器人是必要的。已经提出了许多基于学习的方法,以应对对空间导航的经典管道的缺乏语义理解,该航空导航使用深度传感器和计划达到点目标,构建了几何图。从广义上讲,端到端的学习方法反应地将传感器的输入映射到具有深层神经网络的动作,而模块化学习方法则通过基于学习的语义传感和探索丰富了经典管道。但是,在模拟中主要评估了学到的视觉导航政策。不同类别的方法在机器人上的工作效果如何?我们提出了一项大规模的实证研究,对语义视觉导航方法进行了比较,从没有先前经验,地图或仪器的六个家庭中的经典,模块化和端到端学习方法比较了代表性方法。我们发现,模块化学习在现实世界中效果很好,成功率达到了90%。相反,由于模拟与现实之间的较大图像域差距,端到端的学习不会从77%的模拟降至23%的现实世界成功率。对于从业人员而言,我们表明模块化学习是导航到对象的可靠方法:策略设计中的模块化和抽象实现SIM转移。对于研究人员而言,我们确定了两个关键问题,这些问题可以防止当今的模拟器成为可靠的评估基准 - (a)图像中的SIM卡之间存在较大的SIM卡间差距,以及(b)模拟和现实世界中的错误模式之间的断开连接 - 并提出了混凝土步骤。
Semantic navigation is necessary to deploy mobile robots in uncontrolled environments like our homes, schools, and hospitals. Many learning-based approaches have been proposed in response to the lack of semantic understanding of the classical pipeline for spatial navigation, which builds a geometric map using depth sensors and plans to reach point goals. Broadly, end-to-end learning approaches reactively map sensor inputs to actions with deep neural networks, while modular learning approaches enrich the classical pipeline with learning-based semantic sensing and exploration. But learned visual navigation policies have predominantly been evaluated in simulation. How well do different classes of methods work on a robot? We present a large-scale empirical study of semantic visual navigation methods comparing representative methods from classical, modular, and end-to-end learning approaches across six homes with no prior experience, maps, or instrumentation. We find that modular learning works well in the real world, attaining a 90% success rate. In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality. For practitioners, we show that modular learning is a reliable approach to navigate to objects: modularity and abstraction in policy design enable Sim-to-Real transfer. For researchers, we identify two key issues that prevent today's simulators from being reliable evaluation benchmarks - (A) a large Sim-to-Real gap in images and (B) a disconnect between simulation and real-world error modes - and propose concrete steps forward.