论文标题
渐近非局部重力
Asymptotically nonlocal gravity
论文作者
论文摘要
Lee-Wick理论与多个传播杆和无鬼非本地理论之间的渐近非本地场理论插值。先前关于渐近非局部标量,阿贝尔和非亚洲仪表理论的工作已经证明了存在的新兴调节量表的存在,该量表在层次上比最轻的Lee-Wick合作伙伴小,而Lee-Wick Spectrum频谱变得很密集并取消。我们将这种结构概括为线性化的重力,并在三个示例中证明了新兴的调节量表:通过研究奇异性(i)的分辨率(i)的分辨率(i)在经典解决方案中用于点粒子的度量标准,以及(ii)在非差异性重力势中通过一千里顿的交换尺寸计算得出的非差异性重力势; (iii)我们还展示了该得出的量表如何调节对真实标量场的自我能量的单循环贡献。我们简要评论了我们对全线性重力理论的方法的概括。
Asymptotically nonlocal field theories interpolate between Lee-Wick theories with multiple propagator poles, and ghost-free nonlocal theories. Previous work on asymptotically nonlocal scalar, Abelian, and non-Abelian gauge theories has demonstrated the existence of an emergent regulator scale that is hierarchically smaller than the lightest Lee-Wick partner, in a limit where the Lee-Wick spectrum becomes dense and decoupled. We generalize this construction to linearized gravity, and demonstrate the emergent regulator scale in three examples: by studying the resolution of the singularity (i) at the origin in the classical solution for the metric of a point particle, and (ii) in the nonrelativistic gravitational potential computed via a one-graviton exchange amplitude; (iii) we also show how this derived scale regulates the one-loop graviton contribution to the self energy of a real scalar field. We comment briefly on the generalization of our approach to the full, nonlinear theory of gravity.