论文标题

基于模型的GNN,用于学习预编码

A Model-based GNN for Learning Precoding

论文作者

Guo, Jia, Yang, Chenyang

论文摘要

通过神经网络学习预编码的策略可以使在线实施较低,稳健性以引导障碍以及通过渠道获取的联合优化。但是,当现有的神经网络被用来学习优化预测多用户干扰时,它们具有高训练的复杂性和不良的概括能力。这阻碍了它们在用户数量时变化的实用系统中的使用。在本文中,我们提出了一个图形神经网络(GNN),以利用数学模型和策略的特性来学习预编码政策。我们首先表明,当天线和用户的数量较大时,香草gnn不能很好地对频道矩阵进行良好的伪造,并且无法概括地看不见的用户数量。然后,我们通过诉诸泰勒的矩阵伪内向的扩展来设计GNN,这使得捕获邻居边缘的重要性是汇总的,这对于有效地学习预言的策略至关重要。仿真结果表明,所提出的GNN可以很好地学习具有低训练复杂性的单细胞多用户多用户多用户多用户多用户的频谱有效和节能的预编码策略,并且可以很好地将其推广到用户数量。

Learning precoding policies with neural networks enables low complexity online implementation, robustness to channel impairments, and joint optimization with channel acquisition. However, existing neural networks suffer from high training complexity and poor generalization ability when they are used to learn to optimize precoding for mitigating multi-user interference. This impedes their use in practical systems where the number of users is time-varying. In this paper, we propose a graph neural network (GNN) to learn precoding policies by harnessing both the mathematical model and the property of the policies. We first show that a vanilla GNN cannot well-learn pseudo-inverse of channel matrix when the numbers of antennas and users are large, and is not generalizable to unseen numbers of users. Then, we design a GNN by resorting to the Taylor's expansion of matrix pseudo-inverse, which allows for capturing the importance of the neighbored edges to be aggregated that is crucial for learning precoding policies efficiently. Simulation results show that the proposed GNN can well learn spectral efficient and energy efficient precoding policies in single- and multi-cell multi-user multi-antenna systems with low training complexity, and can be well generalized to the numbers of users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源