论文标题
以目标为中心的脑电图数据增强的主题转移框架
Target-centered Subject Transfer Framework for EEG Data Augmentation
论文作者
论文摘要
广泛探索了数据增强方法,以增强解码脑电图信号。在独立于主题的大脑计算机界面系统中,域的适应性和概括用于移动源对象的数据分布,以匹配目标主体作为增强。但是,以前的作品要么引入噪声(例如,通过噪声添加或随机噪声产生),要么修改目标数据,因此无法很好地描述目标数据分布并阻碍进一步的分析。在本文中,我们建议以目标为中心的主题转移框架作为数据增强方法。首先构建了源数据的子集,以最大化源目标相关性。然后,应用生成模型将数据传输到目标域。提出的框架通过添加额外的真实数据而不是噪音来丰富目标域的解释性。与其他数据增强方法相比,它显示出卓越的性能。进行了广泛的实验,以验证我们的方法作为进一步研究的繁荣工具的有效性和鲁棒性。
Data augmentation approaches are widely explored for the enhancement of decoding electroencephalogram signals. In subject-independent brain-computer interface system, domain adaption and generalization are utilized to shift source subjects' data distribution to match the target subject as an augmentation. However, previous works either introduce noises (e.g., by noise addition or generation with random noises) or modify target data, thus, cannot well depict the target data distribution and hinder further analysis. In this paper, we propose a target-centered subject transfer framework as a data augmentation approach. A subset of source data is first constructed to maximize the source-target relevance. Then, the generative model is applied to transfer the data to target domain. The proposed framework enriches the explainability of target domain by adding extra real data, instead of noises. It shows superior performance compared with other data augmentation methods. Extensive experiments are conducted to verify the effectiveness and robustness of our approach as a prosperous tool for further research.