论文标题

马尔可夫跳跃线性系统的正式控制器合成,具有不确定的动态

Formal Controller Synthesis for Markov Jump Linear Systems with Uncertain Dynamics

论文作者

Rickard, Luke, Badings, Thom, Romao, Licio, Abate, Alessandro

论文摘要

对网络物理系统的可证明正确控制器的自动合成对于在安全至关重要的情况下的部署至关重要。但是,混合特征以及随机或未知行为使这个问题具有挑战性。我们提出了一种用于Markov跳跃线性系统(MJLSS)的合成控制器的方法,Markov跳线系统是网络物理系统的一类离散时间模型,以便它们可以证明满足概率计算树逻辑(PCTL)公式。 MJLS由一组有限的随机线性动力学组成,并在由马尔可夫决策过程(MDP)控制的这些动力学之间进行离散跳跃。我们考虑该MDP的过渡概率要么已知或完全未知的情况。我们的方法是基于有限状态抽象,该抽象同时捕获了MJLS的离散(跳跃)和连续(随机线性)行为。我们将此抽象形式化为间隔MDP(IMDP),我们使用来自所谓的“场景方法”中的采样技术来计算过渡概率的间隔,从而导致概率上听起来近似。我们将方法应用于多个现实的基准问题,尤其是温度控制和航空车辆输送问题。

Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源