论文标题
利用AI增强代码为随机数生成的概率神经回路
Probabilistic Neural Circuits leveraging AI-Enhanced Codesign for Random Number Generation
论文作者
论文摘要
在我们周围的世界中,随机性无处不在。但是,我们主要的计算范式是确定性的。随机数生成(RNG)可能是该系统中的计算效率低下的操作,尤其是对于较大的工作负载。我们的工作利用了新兴设备的基本物理学来从给定的分布中开发RNG的概率神经回路。但是,用于利用固有设备随机性的新型电路和系统的代码是一个困难的问题。这主要是由于设计空间较大和这样做的复杂性。它需要从设计堆栈中的多个区域的算法,体系结构,电路以及设备的输入。在本文中,我们介绍了使用新兴设备和算法的约束,开发了最佳电路的示例,从而开发了AI增强代码技术。我们的AI增强代码测量方法加速了设计,并启用了来自微电子设计堆栈的专家之间的交互,包括理论,算法,电路和设备。我们使用磁性隧道结和隧道二极管设备展示了最佳的概率神经回路,这些隧道二极管设备从给定的分布产生RNG。
Stochasticity is ubiquitous in the world around us. However, our predominant computing paradigm is deterministic. Random number generation (RNG) can be a computationally inefficient operation in this system especially for larger workloads. Our work leverages the underlying physics of emerging devices to develop probabilistic neural circuits for RNGs from a given distribution. However, codesign for novel circuits and systems that leverage inherent device stochasticity is a hard problem. This is mostly due to the large design space and complexity of doing so. It requires concurrent input from multiple areas in the design stack from algorithms, architectures, circuits, to devices. In this paper, we present examples of optimal circuits developed leveraging AI-enhanced codesign techniques using constraints from emerging devices and algorithms. Our AI-enhanced codesign approach accelerated design and enabled interactions between experts from different areas of the microelectronics design stack including theory, algorithms, circuits, and devices. We demonstrate optimal probabilistic neural circuits using magnetic tunnel junction and tunnel diode devices that generate an RNG from a given distribution.