论文标题

抑制QAOA中不必要的波动和近似量子退火

Suppressing unwanted fluctuations in QAOA and approximate quantum annealing

论文作者

Atif, Touheed Anwar, Potts, Catherine, Haycraft, David, Dridi, Raouf, Chancellor, Nicholas

论文摘要

量子近似优化算法(QAOA)是通过数字化量子退火而部分启发的。基于这种灵感,我们开发了使用通用栅极模型量子计算机的额外灵活性来减轻波动效应的技术,这些效果已知会扭曲量子退火内的搜索空间并导致错误的最小值。我们发现,即使只是进行Pauli X测量值的附加能力,我们也可以通过与Fubini-study Metric的对角线元素成正比的方式来修改混合角度来抵消这些效果。我们发现,在能量格局变形并且可以使用相同的Pauli X测量值的情况下,缓解这些影响可能会导致更高的成功概率,以靶向哪些变量可能容易受到强大波动的影响。即使在$ p = 10-20 $的深度相对较低的深度,我们引入的方法的效果也很重要,这表明我们正在开发的技术在短期内可能是相关的。此外,由于这些方法依赖于通常在QAOA中不修改的自由程度,因此我们的方法将与其他广泛的QAOA创新兼容。我们进一步验证了可以在IONQ Harmony QPU上观察到这些波动效应。

The quantum approximate optimisation algorithm (QAOA) was partially inspired by digitising quantum annealing. Based on this inspiration, we develop techniques to use the additional flexibility of a universal gate-model quantum computer to mitigate fluctuation effects which are known to distort the search space within quantum annealing and lead to false minima. We find that even just the added ability to take Pauli X measurements allows us to modify the mixer angles to counteract these effects by scaling mixer terms in a way proportional to the diagonal elements of the Fubini-Study metric. We find that mitigating these effects can lead to higher success probabilities in cases where the energy landscape is distorted and that we can use the same Pauli X measurements to target which variables are likely to be susceptible to strong fluctuations. The effects of the methods we introduce are relevant even at relatively low depth of $p=10-20$, suggesting that the techniques we are developing are likely to be relevant in the near term. Furthermore, since these methods rely on controlling a degree of freedom which is not typically modified in QAOA, our methods will be compatible with a wide range of other QAOA innovations. We further verify that these fluctuation effects can be observed on an IonQ Harmony QPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源