论文标题
在延时摄像机记录中运动的小昆虫对象检测
Motion Informed Object Detection of Small Insects in Time-lapse Camera Recordings
论文作者
论文摘要
昆虫作为传粉媒介在生态系统管理和世界粮食生产中起着至关重要的作用。但是,昆虫种群正在下降,要求采用有效的昆虫监测方法。现有方法分析了自然界中昆虫的视频或延时图像,但是分析具有挑战性,因为昆虫在自然植被的复杂而动态的场景中是小物体。在这项工作中,我们提供了一个主要蜜蜂的数据集,该数据集在夏季的两个月内访问三种不同的植物物种。该数据集由来自多个相机的107,387个注释的延时图像组成,其中包括9,423种注释的昆虫。我们提出了一种用于在延时RGB图像中检测昆虫的方法管道。该管道由两步过程组成。首先,预处理延时RGB图像以增强图像中的昆虫。这种运动形式增强的技术使用运动和颜色来增强图像中的昆虫。其次,随后将增强的图像送入卷积神经网络(CNN)对象检测器中。该方法改善了您只看一次(YOLO)和基于区域的CNN(更快的R-CNN)的深度学习对象检测器。使用运动信息增强,YOLO-DETECTOR将平均微型F1分数从0.49提高到0.71,而更快的R-CNN检测器将平均微型F1分数从数据集的0.32提高到0.56。我们的数据集和提议的方法提供了向前迈出的一步,以自动化飞行昆虫的延时摄像机监测。该数据集发表在:https://vision.eng.au.dk/mie/
Insects as pollinators play a crucial role in ecosystem management and world food production. However, insect populations are declining, calling for efficient methods of insect monitoring. Existing methods analyze video or time-lapse images of insects in nature, but the analysis is challenging since insects are small objects in complex and dynamic scenes of natural vegetation. In this work, we provide a dataset of primary honeybees visiting three different plant species during two months of the summer period. The dataset consists of 107,387 annotated time-lapse images from multiple cameras, including 9,423 annotated insects. We present a method pipeline for detecting insects in time-lapse RGB images. The pipeline consists of a two-step process. Firstly, the time-lapse RGB images are preprocessed to enhance insects in the images. This Motion-Informed-Enhancement technique uses motion and colors to enhance insects in images. Secondly, the enhanced images are subsequently fed into a Convolutional Neural network (CNN) object detector. The method improves the deep learning object detectors You Only Look Once (YOLO) and Faster Region-based CNN (Faster R-CNN). Using Motion-Informed-Enhancement, the YOLO-detector improves the average micro F1-score from 0.49 to 0.71, and the Faster R-CNN-detector improves the average micro F1-score from 0.32 to 0.56 on the dataset. Our dataset and proposed method provide a step forward to automate the time-lapse camera monitoring of flying insects. The dataset is published on: https://vision.eng.au.dk/mie/