论文标题

贝叶斯启发式强大的空间感知

Bayesian Heuristics for Robust Spatial Perception

论文作者

Chughtai, Aamir Hussain, Tahir, Muhammad, Uppal, Momin

论文摘要

空间感知是几种机器智能应用程序(例如机器人和计算机视觉)的关键任务。通常,它涉及代表系统状态的隐藏变量的非线性估计。但是,在存在测量异常值的情况下,标准的非线性最小二乘配方导致估计差。文献中已经考虑了几种方法,以提高估计过程的可靠性。大多数方法基于启发式方法,因为由于高计算成本,保证全球强大的估计通常不实用。最近,已经提出了稳健的估计启发式方法,它利用可用于无异常值配方的现有非最小求解器,而无需进行初始猜测。在这项工作中,我们提出了三个具有相似结构的贝叶斯启发式方法。我们在实际情况下评估了这些启发式方法,以证明其在不同应用中的优点,包括3D点云注册,网格注册和姿势图优化。我们的提议提供的一般计算优势使它们成为空间感知任务的有吸引​​力的候选人。

Spatial perception is a key task in several machine intelligence applications such as robotics and computer vision. In general, it involves the nonlinear estimation of hidden variables that represent the system's state. However, in the presence of measurement outliers, the standard nonlinear least squared formulation results in poor estimates. Several methods have been considered in the literature to improve the reliability of the estimation process. Most methods are based on heuristics since guaranteed global robust estimation is not generally practical due to high computational costs. Recently general purpose robust estimation heuristics have been proposed that leverage existing non-minimal solvers available for the outlier-free formulations without the need for an initial guess. In this work, we propose three Bayesian heuristics that have similar structures. We evaluate these heuristics in practical scenarios to demonstrate their merits in different applications including 3D point cloud registration, mesh registration and pose graph optimization. The general computational advantages our proposals offer make them attractive candidates for spatial perception tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源