论文标题
广义类别发现的参数信息最大化
Parametric Information Maximization for Generalized Category Discovery
论文作者
论文摘要
我们引入了广义类别发现(GCD)问题的参数信息最大化(PIM)模型。具体而言,我们提出了一个双层优化公式,该公式探讨了目标函数的参数化家族,每种都评估了特征和潜在标签之间的加权相互信息,但要受到标记样品的监督约束。我们的公式减轻了在标准信息最大化方法中编码的类平衡偏差,从而有效地处理了短尾和长尾数据集。我们报告了广泛的实验和比较,表明我们的PIM模型始终在六个不同的数据集中设置了GCD中新的最新性能,因此在处理具有挑战性的细粒度问题时,更是如此。
We introduce a Parametric Information Maximization (PIM) model for the Generalized Category Discovery (GCD) problem. Specifically, we propose a bi-level optimization formulation, which explores a parameterized family of objective functions, each evaluating a weighted mutual information between the features and the latent labels, subject to supervision constraints from the labeled samples. Our formulation mitigates the class-balance bias encoded in standard information maximization approaches, thereby handling effectively both short-tailed and long-tailed data sets. We report extensive experiments and comparisons demonstrating that our PIM model consistently sets new state-of-the-art performances in GCD across six different datasets, more so when dealing with challenging fine-grained problems.