论文标题

反向蒙特卡洛的放松动力学

Relaxation dynamics in reverse Monte Carlo

论文作者

Ball, Akash Kumar, Haque, Suhail, Chatterjee, Abhijit

论文摘要

反向蒙特卡洛(RMC)方法广泛用于实验数据的结构建模和分析。最近,RMC已应用于平衡热力学特性和动态问题的计算。这些研究表明,正确收敛的RMC计算并了解RMC中的松弛行为的重要性。根据我们详细的RMC计算,我们表明了放松由快速和缓慢的方面组成。引入指标来评估是否达到快速平衡,即满足详细的平衡条件。度量标准,基本上是RMC的平衡常数,用作准平衡的测试。缓慢的进化类似于玻璃材料,即,它是根据kohlrausch-williams-watts(kww)函数(即拉伸指数式)的经验来表征的。可以利用此功能来估计收敛误差或从短RMC计算中推断统计量。

The reverse Monte Carlo (RMC) method is widely used in structural modelling and analysis of experimental data. More recently, RMC has been applied to the calculation of equilibrium thermodynamic properties and dynamic problems. These studies point to the importance of properly converging RMC calculations and understanding the relaxation behavior in RMC. From our detailed RMC calculations, we show that the relaxation comprises of both fast and slow aspects. A metric is introduced to assess whether fast equilibration is achieved, i.e., detailed balance condition is satisfied. The metric, essentially an equilibrium constant for RMC, is used as a test for quasi-equilibration. The slow evolution is analogous to glassy materials, i.e., it is characterized empirically in terms of the Kohlrausch-Williams-Watts (KWW) function, i.e., stretched exponentials. This feature can be exploited to estimate the convergence error or to extrapolate statistical quantities from short RMC calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源