论文标题

通过卷积内核冗余度量简化重新结构结构

ResNet Structure Simplification with the Convolutional Kernel Redundancy Measure

论文作者

Zhu, Hongzhi, Rohling, Robert, Salcudean, Septimiu

论文摘要

深度学习,尤其是卷积神经网络,引发了计算机视觉的加速进步,从而使我们的日常实践变化。此外,标准化的深度学习模块(也称为骨干网络),即重新网络和有效网络,已实现了新的计算机视觉解决方案的有效和快速开发。然而,深度学习方法仍然遇到了几个缺点。最令人关注的问题之一是高内存和计算成本,因此,通常必须将专用计算单元(通常是GPU)用于培训和开发。因此,在本文中,我们提出了一种可量化的评估方法,即基于感知的图像差异的卷积内核冗余度量,以指导网络结构简化。将我们的方法应用于Resnet的胸部X射线图像分类问题时,我们的方法可以维持网络的性能,并将参数数量从2300万美元的超过2300万美元减少到约12.8 $ $ 12.8美元(减少了参数的$ 99.46 \%\%)。

Deep learning, especially convolutional neural networks, has triggered accelerated advancements in computer vision, bringing changes into our daily practice. Furthermore, the standardized deep learning modules (also known as backbone networks), i.e., ResNet and EfficientNet, have enabled efficient and rapid development of new computer vision solutions. Yet, deep learning methods still suffer from several drawbacks. One of the most concerning problems is the high memory and computational cost, such that dedicated computing units, typically GPUs, have to be used for training and development. Therefore, in this paper, we propose a quantifiable evaluation method, the convolutional kernel redundancy measure, which is based on perceived image differences, for guiding the network structure simplification. When applying our method to the chest X-ray image classification problem with ResNet, our method can maintain the performance of the network and reduce the number of parameters from over $23$ million to approximately $128$ thousand (reducing $99.46\%$ of the parameters).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源