论文标题
Markov Cocycles通过Furstenberg的公式的Lyapunov指数的Hölder连续性
Hölder continuity of the Lyapunov exponent for Markov cocycles via Furstenberg's Formula
论文作者
论文摘要
本文涉及对统一符号的紧凑空间上统一的奇异马尔可夫(Markov)在统一的奇异马尔可夫(Markov)上的研究。我们建立了最大Lyapunov指数的关节连续性,这是Cocycle的函数和任何不可约生的Cocycle附近的过渡内核,并具有简单的最大Lyapunov指数。我们的方法通过Furstenberg的公式显示了Hölder的持续依赖性对投射过程的固定度量的数据,尤其是提供了更可计算的Hölder指数。
This paper is concerned with the study of linear cocycles over uniformly ergodic Markov shifts on a compact space of symbols. We establish the joint Hölder continuity of the maximal Lyapunov exponent as a function of the cocycle and the transition kernel in the vicinity of any irreducible cocycle with simple maximal Lyapunov exponent. Our approach, via Furstenberg's formula, shows the Hölder continuous dependence on the data of the stationary measure of the projective cocycle and in particular provides a more computable Hölder exponent.