论文标题
三角形原子阵列中的新兴轨道天空晶格
Emergent Orbital Skyrmion Lattice in a Triangular Atom Array
论文作者
论文摘要
在过去的几年中,多轨光学晶格一直吸引着快速增长的研究兴趣,为基于轨道的量子模拟提供了迷人的机会。在这里,我们考虑在二维三角光学晶格的退化$ p $ - 轨道带中加载的骨气原子。该系统由多轨bose-Hubbard模型描述。我们发现该系统中的限制原子会形成自发的轨道极化,该轨道极化形成了相位图的大型状态的手性天际晶格模式。这与它的自旋类似物相反,该类似物在很大程度上需要自旋轨道耦合。在玻璃纤维动力学平均场理论(BDMFT)和精确的对角线化(ED)计算中证实了Skyrmion晶格的出现。通过分析在强相互作用极限下量子隧道诱导的轨道交往相互作用,我们发现由于$ p $ - 轨道对称性的相互作用和三角形晶格的几何挫败感而产生了天际晶格状态。我们提供了轨道天空状态的实验后果,可以在冷原子实验中很容易测试。我们的研究暗示基于轨道的量子模拟可能会使它们的旋转类似物中出现异国情调的情况。
Multi-orbital optical lattices have been attracting rapidly growing research interests in the last several years, providing fascinating opportunities for orbital-based quantum simulations. Here, we consider bosonic atoms loaded in the degenerate $p$-orbital bands of a two-dimensional triangular optical lattice. This system is described by a multi-orbital Bose-Hubbard model. We find the confined atoms in this system develop spontaneous orbital polarization, which forms a chiral Skyrmion lattice pattern in a large regime of the phase diagram. This is in contrast to its spin analogue which largely requires spin-orbit couplings. The emergence of the Skyrmion lattice is confirmed in both bosonic dynamical mean-field theory (BDMFT) and exact diagonalization (ED) calculations. By analyzing the quantum tunneling induced orbital-exchange interaction in the strong interaction limit, we find the Skyrmion lattice state arises due to the interplay of $p$-orbital symmetry and the geometric frustration of the triangular lattice. We provide experimental consequences of the orbital Skyrmion state, that can be readily tested in cold atom experiments. Our study implies orbital-based quantum simulations could bring exotic scenarios unexpected from their spin analogue.