论文标题
嘉年华:用于精确纤维分割的自动编码器
FIESTA: Autoencoders for accurate fiber segmentation in tractography
论文作者
论文摘要
白色物质束分割是现代拖拉术的基石,可以研究大脑在神经系统疾病,神经外科和衰老等领域中的结构连通性。在这项研究中,我们介绍了嘉年华(使用自动编码器进行拖拉机的纤维分割),这是一种可靠,可靠的,完全自动化的,易于半自动的,基于深层自动编码器的半自动校准管道,该管道可以剖析并完全填充白色物质捆绑包。该管道建立在以前的作品上,该作品证明了如何成功地将自动编码器用于简化过滤,捆绑分段和拖拉机中的简化生成。我们提出的方法通过通过受试者束和Atlas束的潜在空间播种来恢复难以训练的捆绑包,从而改善了束分割的覆盖范围。使用基于自动编码器的建模与对比度学习相结合的流线潜在空间。使用标准空间(MNI)中的捆绑图集,我们提出的方法段段新的拖拉图使用每个拖拉图流线之间的自动编码器潜在距离及其最接近的邻居捆绑包中的束。通过恢复难以跟踪的流线,使用自动编码器生成新的流线,从而增加每个捆绑包的空间覆盖范围,同时在解剖学上保持正确的情况下,从而提高了主体内束可靠性。结果表明,我们的方法比最先进的自动化虚拟解剖方法(例如重生,recobundlesx,tractseg,tractseg,白质分析和Xtract)更可靠。我们的框架可以通过边缘校准工作从一个解剖束定义到另一个解剖束定义的过渡。总体而言,这些结果表明,我们的框架提高了当前最新捆绑分段框架的实用性和可用性。
White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate white matter bundles. This pipeline is built upon previous works that demonstrated how autoencoders can be used successfully for streamline filtering, bundle segmentation, and streamline generation in tractography. Our proposed method improves bundle segmentation coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase the spatial coverage of each bundle while remaining anatomically correct. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Our framework allows for the transition from one anatomical bundle definition to another with marginal calibration efforts. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundle segmentation framework.