论文标题

视觉变压器的零件面部识别

Part-based Face Recognition with Vision Transformers

论文作者

Sun, Zhonglin, Tzimiropoulos, Georgios

论文摘要

使用CNN和基于保证金的损失的整体方法占据了面部识别的研究。在这项工作中,我们以两种方式偏离了这种环境:(a)我们采用视觉变压器作为培训面部识别非常强大的基线的建筑,简单地称为FVIT,它已经超过了大多数最先进的面部识别方法。 (b)其次,我们利用了从不规则网格中提取的处理信息(视觉令牌)的变压器的固有属性,以设计面部识别管道,以使人联想到基于部分的面部识别方法。我们的管道称为零件FVIT,仅包括一个轻巧的网络,以预测面部地标的坐标,然后是视觉变压器在从预测地标提取的贴片上运行的视觉变压器,并且在没有地标监督的情况下,它是经过训练的端到端训练的。通过学习提取歧视性斑块,我们的部分变压器进一步提高了视觉变压器基线的准确性,从而在几个面部识别基准上实现了最新的准确性。

Holistic methods using CNNs and margin-based losses have dominated research on face recognition. In this work, we depart from this setting in two ways: (a) we employ the Vision Transformer as an architecture for training a very strong baseline for face recognition, simply called fViT, which already surpasses most state-of-the-art face recognition methods. (b) Secondly, we capitalize on the Transformer's inherent property to process information (visual tokens) extracted from irregular grids to devise a pipeline for face recognition which is reminiscent of part-based face recognition methods. Our pipeline, called part fViT, simply comprises a lightweight network to predict the coordinates of facial landmarks followed by the Vision Transformer operating on patches extracted from the predicted landmarks, and it is trained end-to-end with no landmark supervision. By learning to extract discriminative patches, our part-based Transformer further boosts the accuracy of our Vision Transformer baseline achieving state-of-the-art accuracy on several face recognition benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源