论文标题

紫红色 - 光学相干断层扫描的CNN体​​系结构

ClaRet -- A CNN Architecture for Optical Coherence Tomography

论文作者

Magotra, Adit, Gedam, Aagat, Savadi, Tanush, Li, Emily

论文摘要

光学相干断层扫描是一种用于扫描眼睛视网膜并检查眼泪的技术。在本文中,我们为OCT扫描分类开发了卷积神经网络体系结构。该模型经过训练,以检测OCT扫描中的视网膜撕裂并对撕裂的类型进行分类。我们设计了一种基于块的方法,可以使用转移学习伴随预训练的VGG-19,通过在块中编写自定义层以更好地提取特征。该方法比我们最初开始的基线取得了更好的结果。

Optical Coherence Tomography is a technique used to scan the Retina of the eye and check for tears. In this paper, we develop a Convolutional Neural Network Architecture for OCT scan classification. The model is trained to detect Retinal tears from an OCT scan and classify the type of tear. We designed a block-based approach to accompany a pre-trained VGG-19 using Transfer Learning by writing customised layers in blocks for better feature extraction. The approach achieved substantially better results than the baseline we initially started out with.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源