论文标题
最大的偏斜线在遗传学表面和修改后的Bron-Kerbosch算法上
Maximal skew sets of lines on a Hermitian surface and a modified Bron-Kerbosch algorithm
论文作者
论文摘要
在本文中,我们研究了在遗传表面上的最大偏斜线。我们给出了一种新算法来计算这些集合,并给出一些3,4学位和5度的遗传学表面的计算结果。在更一般性的情况下,该算法解决了集团清单问题的新变体,这可能比古典问题更容易接近。最后,我们在任何程度的Hermitian品种上明确构造了一组巨大的线条,并使用它在最大偏斜套件的最大尺寸上给出了下限,并在可能数量的最大偏斜套件上给出了下限。
In this paper, we study maximal sets of skew lines on Hermitian surfaces. We give a new algorithm to compute these sets and give some computational results for Hermitian surfaces of degrees 3,4, and 5. In more generality, this algorithm solves a new variant of the clique listing problem, which may be more approachable than the classical problem. Finally, we explicitly construct a large skew set of lines on Hermitian varieties of any degree and use it to give a lower bound on the largest size of maximal skew sets and a lower bound on the possible number of maximal skew sets.