论文标题
优化稀疏的费米斯汉密尔顿人
Optimizing sparse fermionic Hamiltonians
论文作者
论文摘要
我们考虑使用高斯州近似典型的哈密顿量的基态能量的问题。与密集的情况形成鲜明对比的是,我们证明了严格的$ q $ -local $ \ rm {\ textIt {sparse}} $ fermionic hamiltonians具有恒定的高斯近似值;结果具有任何连通性和相互作用强度。稀疏意味着每个费米恩都参与界数的数量,并且严格$ q $ - 本地意味着每个学期恰好涉及$ q $ fermionic(majoragrana)运营商。我们扩展了证明,以给具有四分之一术语和二次术语的稀疏费米子哈密顿量的稀疏费米子哈密顿人提供恒定的高斯近似值。通过额外的工作,我们还证明了所谓的稀疏SYK模型的恒定高斯近似值,该模型严格$ 4 $ - 本地交互(稀疏Syk- $ 4 $型号)。在每种情况下,我们都表明可以有效地确定高斯状态。最后,我们证明了$ o(n^{ - 1/2})$高斯的近似值(密度)SYK- $ 4 $型号的$ Q $均为Syk- $ Q $,甚至$ q> 4 $,近似值为$ O(n^{1/2- Q/4})$。我们的结果确定非应有性是Syk- $ 4 $模型无法具有恒定近似比的主要原因。
We consider the problem of approximating the ground state energy of a fermionic Hamiltonian using a Gaussian state. In sharp contrast to the dense case, we prove that strictly $q$-local $\rm {\textit {sparse}}$ fermionic Hamiltonians have a constant Gaussian approximation ratio; the result holds for any connectivity and interaction strengths. Sparsity means that each fermion participates in a bounded number of interactions, and strictly $q$-local means that each term involves exactly $q$ fermionic (Majorana) operators. We extend our proof to give a constant Gaussian approximation ratio for sparse fermionic Hamiltonians with both quartic and quadratic terms. With additional work, we also prove a constant Gaussian approximation ratio for the so-called sparse SYK model with strictly $4$-local interactions (sparse SYK-$4$ model). In each setting we show that the Gaussian state can be efficiently determined. Finally, we prove that the $O(n^{-1/2})$ Gaussian approximation ratio for the normal (dense) SYK-$4$ model extends to SYK-$q$ for even $q>4$, with an approximation ratio of $O(n^{1/2 - q/4})$. Our results identify non-sparseness as the prime reason that the SYK-$4$ model can fail to have a constant approximation ratio.