论文标题

在周期性丘陵上流动的墙壁建模的多代理增强学习

Multi-agent reinforcement learning for wall modeling in LES of flow over periodic hills

论文作者

Zhou, Di, Whitmore, Michael P., Griffin, Kevin P., Bae, H. Jane

论文摘要

我们开发了用于大型模拟(LES)的墙模型,该模型考虑了使用多代理增强学习(MARL)的各种压力梯度效应。该模型是使用沿周期山上的低雷诺数流动训练的,其代理沿着计算网格点分布在壁上。该模型利用墙壁涡流公式作为边界条件,这证明可以更好地预测平均速度场,而不是典型的壁剪应力公式。每个代理都根据局部位置的局部瞬时流量量接收状态,根据估计的壁剪应力计算奖励,并在每个时间步骤中提供了更新墙壁涡流粘度的措施。训练有素的壁模型在较高雷诺数的周期山上的壁模型LE(WMLE)中得到了验证,结果显示了该模型对使用压力梯度的流量的有效性。对训练的模型的分析表明,该模型能够区分流动中存在的各种压力梯度机制。

We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning (MARL). The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall along the computational grid points. The model utilizes a wall eddy-viscosity formulation as the boundary condition, which is shown to provide better predictions of the mean velocity field, rather than the typical wall-shear stress formulation. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES (WMLES) of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源