论文标题

通过多任务学习和一侧元三重损失,通用的面部反欺骗

Generalized Face Anti-Spoofing via Multi-Task Learning and One-Side Meta Triplet Loss

论文作者

Chuang, Chu-Chun, Wang, Chien-Yi, Lai, Shang-Hong

论文摘要

随着面部表现攻击的越来越多的变化,模型的概括成为实用面部反欺骗系统的基本挑战。本文介绍了一个广义的反企业框架,其中包括三个任务:深度估计,面部解析和实时/欺骗分类。通过从面部解析和深度估计任务进行像素的监督,正则化功能可以更好地区分欺骗面孔。在使用元学习技术模拟结构域移动的同时,提出的一侧三重态损耗可以进一步提高概括能力。在四个公共数据集上进行的广泛实验表明,所提出的框架和培训策略比以前的模型概括更有效,可以看不见。

With the increasing variations of face presentation attacks, model generalization becomes an essential challenge for a practical face anti-spoofing system. This paper presents a generalized face anti-spoofing framework that consists of three tasks: depth estimation, face parsing, and live/spoof classification. With the pixel-wise supervision from the face parsing and depth estimation tasks, the regularized features can better distinguish spoof faces. While simulating domain shift with meta-learning techniques, the proposed one-side triplet loss can further improve the generalization capability by a large margin. Extensive experiments on four public datasets demonstrate that the proposed framework and training strategies are more effective than previous works for model generalization to unseen domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源