论文标题

VideoFact:使用注意力,场景上下文和法医痕迹检测视频伪造

VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces

论文作者

Nguyen, Tai D., Fang, Shengbang, Stamm, Matthew C.

论文摘要

假视频代表着重要的错误信息威胁。尽管现有的法医网络在图像伪造上表现出很强的性能,但在Adobe Videosham数据集中报告的最新结果表明,这些网络无法在视频中识别出虚假的内容。在本文中,我们表明这是由于视频编码引起的,该视频编码将局部变化引入法医痕迹。作为回应,我们提出了VideoFact,这是一个能够检测和本地化各种视频伪造和操纵的新网络。为了克服现有网络在分析视频时面临的挑战,我们的网络利用两种法医嵌入来捕获操纵所留下的痕迹,上下文嵌入,以控制视频编码引入的法医痕迹的变化以及深层的自我意见机制,以估算位置的质量和相对重要性。我们创建了几个新的视频伪造数据集,并将其与公开数据一起使用,以实验评估我们的网络的性能。这些结果表明,我们提出的网络能够确定一组各种视频伪证,包括在培训期间未遇到的那些伪造。此外,我们表明我们的网络可以进行微调,以在挑战基于AI的操作方面取得更强的性能。

Fake videos represent an important misinformation threat. While existing forensic networks have demonstrated strong performance on image forgeries, recent results reported on the Adobe VideoSham dataset show that these networks fail to identify fake content in videos. In this paper, we show that this is due to video coding, which introduces local variation into forensic traces. In response, we propose VideoFACT - a new network that is able to detect and localize a wide variety of video forgeries and manipulations. To overcome challenges that existing networks face when analyzing videos, our network utilizes both forensic embeddings to capture traces left by manipulation, context embeddings to control for variation in forensic traces introduced by video coding, and a deep self-attention mechanism to estimate the quality and relative importance of local forensic embeddings. We create several new video forgery datasets and use these, along with publicly available data, to experimentally evaluate our network's performance. These results show that our proposed network is able to identify a diverse set of video forgeries, including those not encountered during training. Furthermore, we show that our network can be fine-tuned to achieve even stronger performance on challenging AI-based manipulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源