论文标题
谐波潜力中的单个活动粒子:jarzynski关系的不存在
Single active particle in a harmonic potential: non-existence of the Jarzynski relation
论文作者
论文摘要
对主动物质的兴趣刺激了将热力学描述和与活性物质系统的关系概括为本质上超出平衡的活性物质系统的需求。一个重要的例子是Jarzynski关系,该关系将连接两个均衡状态与这些状态的自由能差的任意过程中完成的工作的指数平均值联系起来。使用简单的模型系统,具有谐波电位的单个热活动Ornstein-Uhlenbeck粒子,我们表明,如果使用了标准的随机热力学定义,则Jarzynski关系通常对活动物质系统的固定状态之间的过程通常没有有效。
The interest in active matter stimulates the need to generalize thermodynamic description and relations to active matter systems, which are intrinsically out of equilibrium. One important example is the Jarzynski relation, which links the exponential average of work done in an arbitrary process connecting two equilibrium states with the difference of the free energies of these states. Using a simple model system, a single thermal active Ornstein-Uhlenbeck particle in a harmonic potential, we show that if the standard stochastic thermodynamics definition of work is used, the Jarzynski relation is not generally valid for processes between stationary states of active matter systems.