论文标题
PINNET:具有阿尔茨海默氏病的先验知识的深度神经网络
PINNet: a deep neural network with pathway prior knowledge for Alzheimer's disease
论文作者
论文摘要
阿尔茨海默氏病(AD)与血液相关的转录组特征的鉴定对于早期诊断该疾病很重要。深度学习技术是用于AD诊断的有效分类器,但是由于缺乏可解释性,大多数人无法识别生物标志物。为了应对这些挑战,我们提出了一个基于途径的神经网络(PINNET),以预测AD患者并使用可解释的深度学习模型来分析血液和脑部转录组学特征。 PINNET是一个深层神经网络(DNN)模型,具有来自基因本体论或基因和基因组数据库百科全书的途径知识的途径。然后,采用了基于反向传播的模型解释方法来揭示用于预测AD的必要途径和基因。我们将PINNET的性能与没有途径的DNN模型进行了比较。 PINNET的表现优于外观或与DNN相似,而没有血液和脑基因表达的途径。此外,PINNET将更多与AD相关的基因视为与DNN相比,在学习过程中没有途径。高度贡献基因的蛋白质蛋白相互作用模块的途径分析表明,血液中与AD相关的基因富含细胞迁移,PI3K-AKT,MAPK信号传导和血液中的凋亡。富含大脑模块的途径包括细胞迁移,PI3K-AKT,MAPK信号传导,凋亡,蛋白质泛素化和T细胞激活。总体而言,有关于途径的先验知识,Pinnet揭示了与AD相关的必要途径。
Identification of Alzheimer's Disease (AD)-related transcriptomic signatures from blood is important for early diagnosis of the disease. Deep learning techniques are potent classifiers for AD diagnosis, but most have been unable to identify biomarkers because of their lack of interpretability. To address these challenges, we propose a pathway information-based neural network (PINNet) to predict AD patients and analyze blood and brain transcriptomic signatures using an interpretable deep learning model. PINNet is a deep neural network (DNN) model with pathway prior knowledge from either the Gene Ontology or Kyoto Encyclopedia of Genes and Genomes databases. Then, a backpropagation-based model interpretation method was applied to reveal essential pathways and genes for predicting AD. We compared the performance of PINNet with a DNN model without a pathway. Performances of PINNet outperformed or were similar to those of DNN without a pathway using blood and brain gene expressions, respectively. Moreover, PINNet considers more AD-related genes as essential features than DNN without a pathway in the learning process. Pathway analysis of protein-protein interaction modules of highly contributed genes showed that AD-related genes in blood were enriched with cell migration, PI3K-Akt, MAPK signaling, and apoptosis in blood. The pathways enriched in the brain module included cell migration, PI3K-Akt, MAPK signaling, apoptosis, protein ubiquitination, and t-cell activation. Collectively, with prior knowledge about pathways, PINNet reveals essential pathways related to AD.