论文标题
非平坦宇宙中的kaniadakis熵的全息暗能
Holographic dark energy through Kaniadakis entropy in non flat universe
论文作者
论文摘要
通过将标准全息原理扩展到宇宙学框架,并将非平局条件与卡尼亚达克斯熵相结合,我们构建了非静电kaniadakis全息暗能量模型。该模型使用Kaniadakis参数$ K $和参数$ C $。获得了KHDE密度参数的微分方程来描述宇宙的进化行为。这样的微分方程可以解释开放式和封闭的宇宙模型。基于物质和黑暗能源(DE)主导的制度的分类表明,KHDE场景可用于指定宇宙的热历史,并且可以遇到五五重骨状态。对于两个情况下,我们找到了减速参数和状态(EOS)参数方程的表达式。同样,通过改变关联的参数,可以建立该方法的经典稳定性。在考虑曲率为正的时,宇宙有利于相对于平坦条件的五重量行为,而仅在这种$ k $值的情况下才能达到较小的情况。此外,我们在考虑到这种$ K $值的曲率时看到了类似的行为。因此,添加一点空间几何形状在KHDE中不扁平,可以增强现象学,同时保持$ k $值的较低水平。为了验证模型参数,使用了最新$ 30 \; H(Z)$数据集测量值,在红移范围内使用$ 0.07 \ leq Z \ leq 1.965 $。此外,采用了当前联合2.1型IA型超新星的距离模量测量。
By extending the standard holographic principle to a cosmological framework and combining the non-flat condition with the Kaniadakis entropy, we construct the non-flat Kaniadakis holographic dark energy model. The model employs Kaniadakis parameter $K$ and a parameter $c$. Derivation of the differential equation for KHDE density parameter to describe the evolutionary behavior of the universe is obtained. Such a differential equation could explain both the open as well as closed universe models. The classification based on matter and dark energy (DE) dominated regimes show that the KHDE scenario may be used to specify the Universe's thermal history and that a quintom regime can be encountered. For open and closed both the cases, we find the expressions for the deceleration parameter and the equation of state (EoS) parameter. Also, by varying the associated parameters, classical stability of the method is established. On considering the curvature to be positive, the universe favors the quintom behavior for substantially smaller values as opposed to the flat condition, when only quintessence is attained for such $K$ values. Additionally, we see a similar behavior while considering the curvature to be negative for such $K$ values. Therefore, adding a little bit of spatial geometry that isn't flat to the KHDE enhances the phenomenology while maintaining $K$ values at lower levels. To validate the model parameters, the most recent $30\;H(z)$ dataset measurements, in the redshift range $0.07 \leq z \leq 1.965$ are utilized. In addition, the distance modulus measurement from the current Union 2.1 data set of type Ia supernovae are employed.