论文标题
面具背后的内容:估计图像到图像问题的不确定性
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
论文作者
论文摘要
估计图像到图像网络中的不确定性是一项重要任务,尤其是随着这些网络越来越多地部署在生物和医学成像领域。在本文中,我们介绍了一种基于掩盖的新方法。给定现有的图像到图像网络,我们的方法计算一个掩码,以使掩盖的重建图像和掩盖的真实图像之间的距离保证小于指定的阈值,并且概率很高。因此,掩模可以识别重建图像的更某些区域。我们的方法对基础图像到图像网络不可知,仅需要输入的三元(退化),重建和真实图像进行培训。此外,我们的方法对所使用的距离度量是不可知的。结果,人们可以使用$ L_P $ - 风格的距离或LPIP(例如LPIP)的距离,这与基于间隔的不确定性方法形成对比。我们的理论保证源于保形校准程序。我们评估了基于面具的方法对图像着色,图像完成和超分辨率任务的不确定性,从而证明了每个方法的高质量性能。
Estimating uncertainty in image-to-image networks is an important task, particularly as such networks are being increasingly deployed in the biological and medical imaging realms. In this paper, we introduce a new approach to this problem based on masking. Given an existing image-to-image network, our approach computes a mask such that the distance between the masked reconstructed image and the masked true image is guaranteed to be less than a specified threshold, with high probability. The mask thus identifies the more certain regions of the reconstructed image. Our approach is agnostic to the underlying image-to-image network, and only requires triples of the input (degraded), reconstructed and true images for training. Furthermore, our method is agnostic to the distance metric used. As a result, one can use $L_p$-style distances or perceptual distances like LPIPS, which contrasts with interval-based approaches to uncertainty. Our theoretical guarantees derive from a conformal calibration procedure. We evaluate our mask-based approach to uncertainty on image colorization, image completion, and super-resolution tasks, demonstrating high quality performance on each.