论文标题
旋转黑洞的拓扑类别
Topological classes of rotating black holes
论文作者
论文摘要
在本文中,我们研究了在任意维度和四维Kerr-Newman Black Hole中单单旋转Kerr黑洞的拓扑数。我们表明,对于无负荷的黑洞,旋转参数对拓扑数有显着影响,对于旋转黑洞,时空的尺寸也对拓扑数也产生了显着影响。此外,我们发现四维Kerr和Kerr-Newman黑洞的拓扑数是相同的,这似乎表明电荷参数对旋转黑洞的拓扑数没有影响。我们目前的研究提供了更多证据,表明魏特等人提出了猜想。 [物理。莱特牧师。 129,191101(2022)],据此,所有黑洞溶液应分为三种不同的拓扑类别,至少在纯的爱因斯坦 - 麦克斯韦重力理论中是准确的。
In this paper, we investigate the topological numbers for singly rotating Kerr black holes in arbitrary dimensions and four-dimensional Kerr-Newman black hole. We show that for uncharged black holes, the rotation parameter has a significant effect on the topological number, and for rotating black holes, the dimension of spacetime has a remarkable effect on the topological number too. In addition, we find that the topological numbers of the four-dimensional Kerr and Kerr-Newman black holes are the same, which seems to indicate that the electric charge parameter has no effect on the topological number of rotating black holes. Our current research provides more evidence that the conjecture put forward in Wei et al. [Phys. Rev. Lett. 129, 191101 (2022)], according to which all black hole solutions should be separated into three different topological classes, is accurate, at least in the pure Einstein-Maxwell gravity theory.