论文标题

部分可观测时空混沌系统的无模型预测

PCT-CycleGAN: Paired Complementary Temporal Cycle-Consistent Adversarial Networks for Radar-Based Precipitation Nowcasting

论文作者

Choi, Jaeho, Kim, Yura, Kim, Kwang-Ho, Jung, Sung-Hwa, Cho, Ikhyun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The precipitation nowcasting methods have been elaborated over the centuries because rain has a crucial impact on human life. Not only quantitative precipitation forecast (QPF) models and convolutional long short-term memory (ConvLSTM), but also various sophisticated methods such as the latest MetNet-2 are emerging. In this paper, we propose a paired complementary temporal cycle-consistent adversarial networks (PCT-CycleGAN) for radar-based precipitation nowcasting, inspired by cycle-consistent adversarial networks (CycleGAN), which shows strong performance in image-to-image translation. PCT-CycleGAN generates temporal causality using two generator networks with forward and backward temporal dynamics in paired complementary cycles. Each generator network learns a huge number of one-to-one mappings about time-dependent radar-based precipitation data to approximate a mapping function representing the temporal dynamics in each direction. To create robust temporal causality between paired complementary cycles, novel connection loss is proposed. And torrential loss to cover exceptional heavy rain events is also proposed. The generator network learning forward temporal dynamics in PCT-CycleGAN generates radar-based precipitation data 10 minutes from the current time. Also, it provides a reliable prediction of up to 2 hours with iterative forecasting. The superiority of PCT-CycleGAN is demonstrated through qualitative and quantitative comparisons with several previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源