论文标题

部分可观测时空混沌系统的无模型预测

Quasi-symmetries between metric spaces and rough quasi-isometries between their infinite hyperbolic cones

论文作者

Huang, Manzi, Xu, Zhihao

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we first prove that any power quasi-symmetry of two metric spaces induces a rough quasi-isometry between their infinite hyperbolic cones. Second, we prove that for a complete metric space $Z$, there exists a point $ω$ in the Gromov boundary of its infinite hyperbolic cone such that $Z$ can be seen as the Gromov boundary relative to $ω$ of its infinite hyperbolic cone. Third, we prove that for a visual Gromov hyperbolic metric space $X$ and a Gromov boundary point $ω$, $X$ is roughly similar to the infinite hyperbolic cone of its Gromov boundary relative to $ω$. These are the generalizations of Theorem 7.4, Theorem 8.1 and Theorem 8.2 in [3] since the underlying spaces are not assumed to be bounded and the hyperbolic cones are infinite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源