论文标题

部分可观测时空混沌系统的无模型预测

Precision measurement of reactor antineutrino oscillation at kilometer-scale baselines by Daya Bay

论文作者

Daya Bay collaboration, An, F. P., Bai, W. D., Balantekin, A. B., Bishai, M., Blyth, S., Cao, G. F., Cao, J., Chang, J. F., Chang, Y., Chen, H. S., Chen, H. Y., Chen, S. M., Chen, Y., Chen, Y. X., Chen, Z. Y., Cheng, J., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Dalager, O., Deng, F. S., Ding, Y. Y., Ding, X. Y., Diwan, M. V., Dohnal, T., Dolzhikov, D., Dove, J., Duyang, H. Y., Dwyer, D. A., Gallo, J. P., Gonchar, M., Gong, G. H., Gong, H., Gu, W. Q., Guo, J. Y., Guo, L., Guo, X. H., Guo, Y. H., Guo, Z., Hackenburg, R. W., Han, Y., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, J. R., Hu, T., Hu, Z. J., Huang, H. X., Huang, J. H., Huang, X. T., Huang, Y. B., Huber, P., Jaffe, D. E., Jen, K. L., Ji, X. L., Ji, X. P., Johnson, R. A., Jones, D., Kang, L., Kettell, S. H., Kohn, S., Kramer, M., Langford, T. J., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Leung, J. K. C., Li, F., Li, H. L., Li, J. J., Li, Q. J., Li, R. H., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, X. Q., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, J. C., Liu, J. L., Liu, J. X., Lu, C., Lu, H. Q., Luk, K. B., Ma, B. Z., Ma, X. B., Ma, X. Y., Ma, Y. Q., Mandujano, R. C., Marshall, C., McDonald, K. T., McKeown, R. D., Meng, Y., Napolitano, J., Naumov, D., Naumova, E., Nguyen, T. M. T., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Peng, J. C., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, J., Reveco, C. Morales, Rosero, R., Roskovec, B., Ruan, X. C., Russell, B., Steiner, H., Sun, J. L., Tmej, T., Treskov, K., Tse, W. -H., Tull, C. E., Viren, B., Vorobel, V., Wang, C. H., Wang, J., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wei, L. H., Wei, W., Wen, L. J., Whisnant, K., White, C. G., Wong, H. L. H., Worcester, E., Wu, D. R., Wu, Q., Wu, W. J., Xia, D. M., Xie, Z. Q., Xing, Z. Z., Xu, H. K., Xu, J. L., Xu, T., Xue, T., Yang, C. G., Yang, L., Yang, Y. Z., Yao, H. F., Ye, M., Yeh, M., Young, B. L., Yu, H. Z., Yu, Z. Y., Yue, B. B., Zavadskyi, V., Zeng, S., Zeng, Y., Zhan, L., Zhang, C., Zhang, F. Y., Zhang, H. H., Zhang, J. L., Zhang, J. W., Zhang, Q. M., Zhang, S. Q., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. Y., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, J., Zhao, R. Z., Zhou, L., Zhuang, H. L., Zou, J. H.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a new determination of the smallest neutrino mixing angle $θ_{13}$ and the mass-squared difference $Δ{\rm m}^{2}_{32}$ using a final sample of $5.55 \times 10^{6}$ inverse beta-decay (IBD) candidates with the final-state neutron captured on gadolinium. This sample was selected from the complete data set obtained by the Daya Bay reactor neutrino experiment in 3158 days of operation. Compared to the previous Daya Bay results, selection of IBD candidates has been optimized, energy calibration refined, and treatment of backgrounds further improved. The resulting oscillation parameters are ${\rm sin}^{2}2θ_{13} = 0.0851 \pm 0.0024$, $Δ{\rm m}^{2}_{32} = (2.466 \pm 0.060) \times 10^{-3}{\rm eV}^{2}$ for the normal mass ordering or $Δ{\rm m}^{2}_{32} = -(2.571 \pm 0.060) \times 10^{-3} {\rm eV}^{2}$ for the inverted mass ordering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源