论文标题
非对称凸体的曲率熵的log-minkowski不等式
The log-Minkowski inequality of curvature entropy for non-symmetric convex bodies
论文作者
论文摘要
在较早的论文\ cite {mazeng}作者介绍了曲率熵的概念,并证明了 在对称假设下,曲率熵的平面对数 - 斜线不等式。在本文中,我们证明了对通用凸形体的曲率熵的平面对数 - 木科基不平等。显示了圆锥体积度量的唯一性,音量的log-minkowski不等式以及$ \ mathbb r^{2} $中的曲率熵的log-minkowski不等式。
In an earlier paper \cite{mazeng} the authors introduced the notion of curvature entropy, and proved the plane log-Minkowski inequality of curvature entropy under the symmetry assumption. In this paper we demonstrate the plane log-Minkowski inequality of curvature entropy for general convex bodies. The equivalence of the uniqueness of cone-volume measure, the log-Minkowski inequality of volume, and the log-Minkowski inequality of curvature entropy for general convex bodies in $\mathbb R^{2}$ are shown.