论文标题
堆叠富含电子和电子缺陷的单层,以实现非凡的中间至远红外激光吸收:C3B/C3N双层中的层间激子
Stacking up electron-rich and electron-deficient monolayers to achieve extraordinary mid- to far-infrared excitonic absorption: Interlayer excitons in the C3B/C3N bilayer
论文作者
论文摘要
我们有效地检测和生成远红外(即Terahertz)辐射的能力在从生物医学成像到星际光谱的区域中至关重要。尽管进行了数十年的深入研究,但由于缺乏可在此频率范围内有效运行的可靠材料,因此电子和光学之间的Terahertz差距仍然是一个重大挑战,并且二维(2D)II型异质结构可能是理想的候选者来填补这一空白。本文中,使用GW加上伯特 - 盐方程方法中的高度准确的多体扰动理论,我们预测,由富含电子C3N组成的II类异质结构和电子不足的C3B单层可以引起中部到远面范围内的非凡的光学活动。 C3N和C3B是两种石墨烯衍生的2D材料,吸引了越来越多的研究注意力。尽管C3N和C3B单层都是中等的间隙2D材料,并且它们仅通过相当弱的范德华相互作用,但双层异质结构令人惊讶地支持非常明亮的,低的能源层间激子,具有大型结合能量的较大的结合能量为0.2〜0.4 eV,可与层次互动型型号的室内温度相同,可在室内适用于室内的温度。我们还详细研究了层间和层内激子的特性和形成机理。
Our ability to efficiently detect and generate far-infrared (i.e., terahertz) radiation is vital in areas spanning from biomedical imaging to interstellar spectroscopy. Despite decades of intense research, bridging the terahertz gap between electronics and optics remains a major challenge due to the lack of robust materials that can efficiently operate in this frequency range, and two-dimensional (2D) type-II heterostructures may be ideal candidates to fill this gap. Herein, using highly accurate many-body perturbation theory within the GW plus Bethe-Salpeter equation approach, we predict that a type-II heterostructure consisting of an electron rich C3N and an electron deficient C3B monolayers can give rise to extraordinary optical activities in the mid- to far-infrared range. C3N and C3B are two graphene-derived 2D materials that have attracted increasing research attention. Although both C3N and C3B monolayers are moderate gap 2D materials, and they only couple through the rather weak van der Waals interactions, the bilayer heterostructure surprisingly supports extremely bright, low-energy interlayer excitons with large binding energies of 0.2 ~ 0.4 eV, offering an ideal material with interlayer excitonic states for mid-to far-infrared applications at room temperature. We also investigate in detail the properties and formation mechanism of the inter- and intra-layer excitons.