论文标题

变异量子算法的隐式分化

Implicit differentiation of variational quantum algorithms

论文作者

Ahmed, Shahnawaz, Killoran, Nathan, Álvarez, Juan Felipe Carrasquilla

论文摘要

在凝结物理物理,量子信息和量子化学中重要的数量以及机器学习算法的元优化中所需的数量,可以表示为表征该系统参数的隐式函数的梯度。在这里,我们展示了如何通过变异量子算法利用隐性分化来计算梯度计算,并探索在凝结物理,量子机器学习和量子信息中的应用。隐式定义为量子算法的解,例如,可以使用隐式分化自动区分量子算法的解决方案,例如,可以自动分化,同时对解决方案的计算方式不可知。我们将此概念应用于对凝结物理学物理量的评估,例如通过各种量子算法研究的广义敏感性。此外,我们开发了两个隐性分化的其他应用:量子机学习算法中的超参数优化,以及基于基于梯度的纠缠几何测量的最大化纠缠量子状态的变异构建。我们的工作将几种类型的梯度计算联系在一起,这些计算可以以一般方式使用变异量子电路进行计算,而无需依赖乏味的分析推导或近似有限差异方法。

Several quantities important in condensed matter physics, quantum information, and quantum chemistry, as well as quantities required in meta-optimization of machine learning algorithms, can be expressed as gradients of implicitly defined functions of the parameters characterizing the system. Here, we show how to leverage implicit differentiation for gradient computation through variational quantum algorithms and explore applications in condensed matter physics, quantum machine learning, and quantum information. A function defined implicitly as the solution of a quantum algorithm, e.g., a variationally obtained ground- or steady-state, can be automatically differentiated using implicit differentiation while being agnostic to how the solution is computed. We apply this notion to the evaluation of physical quantities in condensed matter physics such as generalized susceptibilities studied through a variational quantum algorithm. Moreover, we develop two additional applications of implicit differentiation -- hyperparameter optimization in a quantum machine learning algorithm, and the variational construction of entangled quantum states based on a gradient-based maximization of a geometric measure of entanglement. Our work ties together several types of gradient calculations that can be computed using variational quantum circuits in a general way without relying on tedious analytic derivations, or approximate finite-difference methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源