论文标题

选民模型流程的动态和推断

Dynamics and Inference for Voter Model Processes

论文作者

Vojnovic, Milan, Zhou, Kaifang

论文摘要

我们在一组节点上考虑一个离散的选民模型过程,每个过程都在两个状态之一中,即0或1。在每个时间步中,每个节点根据采样概率采用随机采样邻居的状态,称为节点相互作用参数。我们研究了来自观察到的节点状态的节点相互作用参数的最大似然估计,以实现选民模型过程的给定数量。与以前关于网络自回旋过程参数估计的工作相反,其长期行为是根据固定随机过程的,选民模型是一个吸收的随机过程,最终达到了共识状态。这需要开发一个框架,以从观测值中得出参数估计误差界限,这些观察值包括选民模型过程的几个实现。我们通过将观察数据解释为根据由周期组成的扩展选民过程产生的参数估计误差界限,每个观察数据与选民模型过程的实现相对应,直到吸收到共识状态为止。为了获得这些结果,选民模型过程的共识时间起着重要作用。我们在所有时刻提出了新的界限,并具有与共识时间的任何给定概率相关的界限,这可能具有独立的利益。与大多数现有工作相反,我们的结果产生的共识时间限制为具有很高的可能性。我们还为局部稳定估计器类别的规定误差耐受性中的参数估计介绍了一个采样复杂性下限。

We consider a discrete-time voter model process on a set of nodes, each being in one of two states, either 0 or 1. In each time step, each node adopts the state of a randomly sampled neighbor according to sampling probabilities, referred to as node interaction parameters. We study the maximum likelihood estimation of the node interaction parameters from observed node states for a given number of realizations of the voter model process. In contrast to previous work on parameter estimation of network autoregressive processes, whose long-run behavior is according to a stationary stochastic process, the voter model is an absorbing stochastic process that eventually reaches a consensus state. This requires developing a framework for deriving parameter estimation error bounds from observations consisting of several realizations of a voter model process. We present parameter estimation error bounds by interpreting the observation data as being generated according to an extended voter process that consists of cycles, each corresponding to a realization of the voter model process until absorption to a consensus state. In order to obtain these results, consensus time of a voter model process plays an important role. We present new bounds for all moments and a bound that holds with any given probability for consensus time, which may be of independent interest. In contrast to most existing work, our results yield a consensus time bound that holds with high probability. We also present a sampling complexity lower bound for parameter estimation within a prescribed error tolerance for the class of locally stable estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源